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Introduction

Extreme events are defined to be rare and unexpected.

Extreme rainfall events are one of the most dangerous natural
hazards.

The prediction of severity of future extreme rainfall events is
crucial to planning for disaster prevention.

The generalized extreme value (GEV) distribution is one of
the most popular models to address the heavy tail property.
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Recent studies of the extreme rainfall analysis are divided into two
main categories:

Non-stationary data analysis over time
I [Katz et al., 2002] use the regression model with linear trend

over time.
I [Méndez et al., 2007] employ a nonlinear model with seasonal

trend and long-term trend.

Spatial data analysis over region
I [Begueŕıa and Vicente-Serrano, 2006] model the spatial

patterns of the hazard of extreme rainfall with regression-based
interpolators.

I [Szolgay et al., 2009] compare several interpolators (e.g.,
inverse distance weight, kriging, nearest neighbor) that map
the annual maximum daily precipitation at the regional scale.
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Shortcomings

Site-specific
They are inadequate to flexible modeling such as globally or
locally regional trend modeling.

Pattern-specific

It is difficult to judge overfitting or underfitting of the
estimated model.
e.g. linear trends and linear interpolation.

µ(t) = µ0 + µ1t.

µ(s) = β0 + β1lats + β2longs.
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We consider a regularization method to construct a class of the
nonstationary GEV distribution models at the spatial and temporal
scale simultaneously.

The regularization is popular method to efficiently control the
complexity of model in fields of statistics and computer
science [Tibshirani, 1996].

It is helpful to construct a sufficiently large class of
nonstationary models at the spatial and temporal scale and to
develop an efficient estimation method for the models.

The predictive performance can be improved.
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The GEV Distribution

The Generalized Extreme Value (GEV) distribution is a limiting
distribution of sequences of appropriately normalized maxima of
identically independent distributed (IID) random variables. Let
Yn = max(X1, X2, · · · , Xn), Then as n→∞, the cumulative
distribution function (cdf) of the GEV distribution is defined as

F (y;µ, σ, κ) =

exp
(
−
[
1 + κ(y−µσ )

]−1/κ
+

)
if κ 6= 0,

exp
(
− exp(− (y−µ)

σ )
)

if κ = 0,

where location µ ∈ R, scale σ > 0 and shape parameter κ ∈ R.
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Non-stationary Model

The identical assumption can be relaxed by introducing
time-dependent parameters [Towler et al., 2010].

For example,
µt = β0 + β1t,

where t denotes a time index (e.g., an indicator of year).

Let yt ∼ GEV(µt, σ, κ) for t = 1, · · · , T .

Let µ = (µ1, · · · , µT )> and θ = (σ, κ)>.

Then, the maximum likelihood estimators can be determined
by the minimizing the negative log-likelihood,

L(µ, θ) = −
T∑
t=1

log f(yt;µt, σ, κ).
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In this study, the l1-trend filtering penalty is applied to the
location parameters, µ = (µ1, · · · , µT ).
Trend filtering is a method for nonparametric regression that
estimates underlying trends in time series data
[Kim et al., 2009].

The piecewise linear trend in the location parameter and the
other parameters can be estimated by

(µ̂, θ̂) = argmin
µ,θ

L(µ, θ) + λ‖Dµ‖1, (1)

where ‖ · ‖1 denotes l1 norm, λ ≥ 0 is a regularization
parameter and D ∈ R(T−2)×T is the second-order difference
matrix.

‖Dµ‖1 =
∑T−1

t=2 |(µt+1 − µt)− (µt − µt−1)|.
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When λ→ 0, the estimated parameter µt converges to maximum
likelihood estimate.

When λ→∞, the estimated µt converges to a point on a linear function.

An appropriate selection of λ leads to a piecewise linear trend, which can
be interpreted as abrupt change detection.

Figure: Results of Trend Filtering.
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Computation

We solve (1) by a Alternating Direction Method of Multipliers
(ADMM) [Boyd et al., 2011].

In the ADMM, the objective function (1) is reformulated as

min
µ,θ

L(µ, θ) + λ‖v‖1 (2)

subject to Dµ− v = 0.

Here, z is an auxiliary variable on RT−2.

The augmented Lagrangian function is defined by

Lρ(µ, θ, z,u) = L(µ, θ) + λ‖v‖1 + u>(Dµ− v) +
ρ

2
‖Dµ− v‖2, (3)

where u ∈ RT−2 is the dual parameter associated with the
equality condition of (2) and ρ > 0 is augmented Lagrangian
parameter.
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Spatial Model

Let Ys,t be random variable following the GEV distribution at
site s in year t, Ys,t ∼ GEV(µs, σs, κs).

In this study, the thin-plate splines (TPS) [Duchon, 1977] is
employed and the location parameter is parametrized by

µs = µ0 + h(xs), s = 1, ..., S.

µ0 is a global location parameter across the considered sites.

xs = (x1s, x2s)
> is the coordinate vector whose elements

denote longitude and latitude of the site s.

h : R2 7→ R1 is a spatial map consisting of TPS basis
functions,

h(xs) = B(x1s, x2s)
>β = z>s β,

with β ∈ RK .
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Suppose that the data from each site are observed in the
same period, t = 1, · · · , T and let θs = (σs, κs) and
θ = (θ1, · · · , θS) ∈ R2S .

Parameters of the spatial GEV distribution are estimated by
minimizing the negative log-likelihood of Ys,t,which is given by

L(µ0,β,θ) = −
S∑
s=1

T∑
t=1

log f(ys,t;µ0 + z>s β, θs),

where the total number of observations is N = T × S.
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In the TPS regression, the curvature is also considered as the
complexity of the estimated model.

The TPS penalty function to h(·) is given by

J [h(·)] =
∫∫

R2

(
∂2h(x)

∂x21

)2

+ 2

(
∂2h(x)

∂x1∂x2

)2

+

(
∂2h(x)

∂x22

)2

dx1dx2.

We estimate the spatial function by minimizing the penalized
negative log-likelihood,

Lλ(µ0,β,θ) = L(µ0,β,θ) + λJ [h(·;β)], (4)

where λ ≥ 0 is a regularization (smoothing) parameter.

The penalized MLE of (4) is simply obtained by
Newton-Raphson method.
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When λ→ 0, µs converges to an interpolating estimate.

When λ→∞, it leads to just fitting least squares plane estimate.

Figure: Results of Spatial Model.
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Spatial-Temporal Model

We propose an integrated method to take advantage of both
spatial and temporal structure by regularization.

Let µs,t = µ0,t + h(x1s, x2s).

We apply the trend filtering to µ0,t for t = 1, · · · , T .

And we define the objective function

minL(µ0, β,θ) + λ1‖Dµ0‖1 + λ2J [h(·;β)], (5)

where µ0 = (µ0,1, ..., µ0,T ).

In the ADMM, the objective function (5) is reformulated as

min
µ0,β,θ

L(µ, θ) + λ1‖v‖1 + λ2J [h(·;β)]

subject to Dµ0 − v = 0.
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Model Selection

We use model selection criteria like AIC (Akaike information
criterion).

For the non-stationary model, df(µ̂) = ‖Dµ̂‖0 + 1.

For the spatial model, df(β̂) = Tr (Hλ) , where
Hλ = Z(Z>Z + λΩZ)

−1Z>.

Then the AIC of the estimated spatial-temporal model are as
follows.

AIC(µ̂0, β̂, θ̂) = 2L(µ̂0β̂, θ̂) + 2df(µ̂0, β̂, θ̂).

Here, df(µ̂0, β̂, θ̂) = (‖Dµ̂0‖0 + 1) + Tr (Hλ2) + 2S.
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Numerical Study

We exploit predictive performance of estimated models
according to regularization parameters.

We evaluate results of AIC based on the predictive
performance achieved by an optimal tuning parameter.

To assess the performance of the model, root mean-squared
error (RMSE) are computed.

RMSE =

√√√√ 1

S(T + 2)

S∑
s=1

(ηs − η̂s)2,

where ηs = (µs, σs, κs).
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Simulation 1: Non-stationary Model

Simulation 1 explores in three types of scenarios for µt.

I Scenario 1: µt = 100.
I Scenario 2: µt = 9 + 0.1t.
I Scenario 3: µt = (180− 2t)I(t<40) +100I(40≤t<60) +(−20+2t)I(t≥60).

For 100 replicates, we simulated datasets consisting of
T = 100 observations, yt ∼ GEV (µt, 40, 0.1) for t = 1, ..., T.
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Figure: Boxplot of RMSE values based on 100 runs for the estimated GEV
parameter in the simulation 1. λ∗ is the most frequent selected lambda.

Ijeong Han, Yeonseon Cho, Jong-June Jeon University of Seoul



Simulation 2: Spatial Model

For 100 replicates, we obtain ys,1, ..., ys,T from

ys,t ∼ GEV (µs, σs, κs), t = 1, ..., T.

Here, σs ∼ N(40, 22) and κs ∼ U(0.1, 0.25).
We used S = 50 sites randomly located on (x1, x2) within a
spatial domain of R2 = [−10, 10]2 for all scenario.
Simulation 2 explores in three types of scenarios for µs.
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Figure: Boxplot of root mean square error (RMSE) based on 100 runs for
the GEV parameters in the simulation 2. λ∗ is the most frequent selected
lambda.
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Simulation 3: Spatial-Temporal Model

In Simulation 3, we consider the spatial-temporal model that
assumes

µs,t = µ0,t + h(x1s, x2s).

For simulation setting, the pattern of bowl having 2 change
points of means are considered for µ0,t as described in
Simulation 1.

And the unimodal surface are considered for h(x1s, x2s) as
described in Simulation 2.

For 100 replicates, we sampled from

ys,t ∼ GEV (µs,t, σs, κs), t = 1, ..., T.
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Figure: Boxplot of root mean square error (RMSE) based on 100 runs for
the GEV parameters in the simulation 3. A pair of λ∗1, λ

∗
2 is the most

frequent selected lambda.
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Real Data Analysis: Spatial-Temporal Model

Figure: Results of Spatial-Temporal Model: points denote the observed
daily AMPs of the South Korea; lines are estimated trend of the each
site; λ2 is fixed.
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Conclusion

There are relatively few example in hydrology where
characteristics of extreme value have been studied with
regularization approaches.

Numerical analysis was conducted and the predictive
performances from the model selected by AIC were better for
RMSE.

The proposed GEV spatial-temporal model in this study can
be applied to flexibly find the global and local regional trend.
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Begueŕıa, S. and Vicente-Serrano, S. M. (2006).

Mapping the hazard of extreme rainfall by peaks over threshold extreme
value analysis and spatial regression techniques.

Journal of applied meteorology and climatology, 45(1):108–124.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011).

Distributed optimization and statistical learning via the alternating
direction method of multipliers.

Foundations and Trends R© in Machine learning, 3(1):1–122.

Duchon, J. (1977).

Splines minimizing rotation-invariant semi-norms in sobolev spaces.

In Constructive theory of functions of several variables, pages 85–100.
Springer.

Katz, R. W., Parlange, M. B., and Naveau, P. (2002).

Statistics of extremes in hydrology.

Advances in water resources, 25(8-12):1287–1304.

Ijeong Han, Yeonseon Cho, Jong-June Jeon University of Seoul



Kim, S.-J., Koh, K., Boyd, S., and Gorinevsky, D. (2009).

`1 trend filtering.

SIAM review, 51(2):339–360.

Méndez, F. J., Menéndez, M., Luceño, A., and Losada, I. J. (2007).

Analyzing monthly extreme sea levels with a time-dependent gev model.

Journal of Atmospheric and Oceanic Technology, 24(5):894–911.

Szolgay, J., Parajka, J., Kohnová, S., and Hlavčová, K. (2009).
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