
Thin plate splines

한이정

January 12, 2020

1 The elements of statistical learning (Friedman et al.)

Multidimensional 스플라인 구현을 위해 가장 많이 참고한 자료

5.7 Multidimensional Splines

• Multi-dimensional spline models

– Suppose X ∈ R2.

– hlk(Xl), k = 1, ...,Ml is a basis functions for representing function of Xl.

– Then the M1×M2 dimensional tensor product basis defined by

gjk = h1j(X1)h2j(X2), j = 1, ..,M1, k = 1, ..,M2. (1)

– (1) can be used for representing a two-dimensional function:

g(X) =
∑
j

∑
k

βjkgjk(X). (2)

• Multi-dimensional smoothing splines

– One-dimensional smoothing splines generalized to higher dimensions as well.

– Suppose we have pairs yi, xi with xi ∈ Rd,

min
f

N∑
i=1

(yi − f(xi))
2 + λJ [f], (3)

where J is an appropriate penalty functional for stabilizing a function f in Rd.

1

• Thin plate spline

– For example, in R2

J [f] =

∫∫
R2

[(
∂2f(x)

∂x21

)2

+ 2

(
∂2f(x)

∂x1∂x2

)2

+

(
∂2f(x)

∂x22

)2
]
dx1dx2. (4)

– Optimizing (3) with this penalty leads to a smooth two-dimensional surface,

known as a thin-plate spline.

– It shares many properties with the one-dimensional cubic smoothing spline:

∗ as λ → 0, the solution approaches an interpolating function [the one with

smallest penalty (4)];

∗ as λ→∞, the solution approaches the least squares plane;

∗ for intermediate values of λ, the solution can be represented as a linear

expansion of basis functions, whose coefficients are obtained by a form of

generalized ridge regression;

– The solution has the form (공부 부족한 부분)

f(x) = β0 + β>x+
N∑
j=1

αjhj(x), (5)

where hj(x) = ‖x− xj‖2 log‖x− xj‖.

– These hj are examples of radial basis functions, which are discussed

in more detail in the next section.

– The coefficients are found by (5) into (3), which reduces to a finite-dimensional

penalized least squares problem.

– For the penalty to be finite, the coefficients αj have to satisfy a set of linear

constraints; see Exercise 5.14.

(Ex. 5.14)

Derive the constraints on the αj in the thin-plate spline expansion (5) to guar-

antee that the penalty J(f) is finite. How else could one ensure that the penalty

was finite?

2

– The computational complexity for thin-plate splines is O(N3), since there is

not in general any sparse structure that can be exploited. However, as with

univariate smoothing splines, we can get away with substantially less than the

N knots prescribed by the solution (5).

– In practice, it is usually sufficient to work with a lattice of knots covering the

domain. The penalty is computed for the reduced expansion just as before. Using

K knots reduces the computations to O(NK2 +K3).

Spatial GEV Model Example

• In this study the location parameter is parametrized by

µs = µ0 + h(xs), s = 1, ..., S,

• µ0 is a global location parameter across the considered sites.

• xs = (x1s, x2s)
> is the coordinate vector whose elements denote longitude and latitude

of the site s.

• h : R2 7→ R1 is a spatial map consisting of TPS basis functions.

• Let the vector valued maps consisting of the B-splines basis functions by Bl(·) =

(Bl1(·), · · · , BlKl
(·)) for l = 1, 2, which represent the features of a site. (식 (2) 참고)

• Then, the TPS basis functions are given by the row-wise Kronecker product of B-

splines basis functions denoted by B(x1s, x2s) = B1(x1s) ◦B2(x2s) : R2 7→ RK1K2 .

• In our case for a given xs = (x1s, x2s)
> the TPS basis functions return a K1K2(= K)

dimensional feature vector denoted by

zs = (B11(x1s)B21(x2s), B11(x1s)B22(x2s) · · · , B1K1(x1s)B1K2(x2s))
>.

• Then the spatial function h is given by

h(xs) = B(x1s, x2s)
>β = z>s β, β ∈ RK

3

> library(fda)

> load("./kma_data/Pr_46.RData")

> x=unique(Pr_46$long) # 경도

> y=unique(Pr_46$lat) # 위도

> x_bsobj=create.bspline.basis(range(x),breaks=quantile(x,prob=seq(0,1,length = 3)))

> y_bsobj=create.bspline.basis(range(y),breaks=quantile(y,prob=seq(0,1,length = 3)))

> xbs=eval.basis(x,x_bsobj)

> ybs=eval.basis(y,y_bsobj)

> # row-wise kronecker product (Z matrix)

> tensorbs=do.call(’cbind’, lapply(1:ncol(xbs), function(i) xbs[,i]*ybs))

• The TPS penalty function can be written as quadratic function of β (식 (5) 참고):

{Ω(2)
Bl
}jk =

∫
B

′′

lj(t)B
′′

lk(t)dt,

{Ω(1)
Bl
}jk =

∫
B

′

lj(t)B
′

lk(t)dt,

{Ω(0)
Bl
}jk =

∫
Blj(t)Blk(t)dt,

where {A}jk denotes the element of A in the ith row and the jth column.

• Then, the TPS penalty function can be written as quadratic function of β:

J [h(·)] = β>
(
Ω

(2)
B1
⊗Ω

(0)
B2

+ 2Ω
(1)
B1
⊗Ω

(1)
B2

+ Ω
(0)
B1
⊗Ω

(2)
B2

)
β

≡ β>ΩBβ.

We use the R package fda to obtain ΩB.

(cf. ?fda::bsplinepen) Each element is the inner product of two B-spline basis functions

after applying the derivative or linear differential operator defined by Lfdobj.

> Fmat <- kronecker(bsplinepen(x_bsobj,Lfdobj=2),bsplinepen(y_bsobj,Lfdobj=0))

> Gmat <- kronecker(bsplinepen(x_bsobj,Lfdobj=0),bsplinepen(y_bsobj,Lfdobj=2))

> Hmat <- kronecker(bsplinepen(x_bsobj,Lfdobj=1),bsplinepen(y_bsobj,Lfdobj=1))

Omega_B

> Om <- Fmat+Gmat+2*Hmat

4

• We estimate the spatial function by minimizing the penalized negative log-likelihood,

Lλ(µ0,β,θ) = L(µ0,β,θ) + λJ [h(·; β)]. (6)

5.8 Regularization and Reproducing Kernel Hilbert Spaces

• It is also known that a thin-plate splines is an expansion in radial basis functions,

generated by the kernel

K(x, y) = ‖x− y‖2 log(‖x− y‖) (7)

• Radial basis functions are discussed in more detail in Section 6.7.

• (cf. page 36)

Radial basis functions are symmetric p-dimensional kernels located at particular cen-

troids,

fθ(x) =
M∑
m=1

Kλm(µm, x)θm;

for example, the Gaussian kernel Kλ(µ, x) = e−‖x−µ‖
2/2 is popular.

Radial basis functions have centroids µm and scales λm that have to be determined.

The spline basis functions have knots. In general we would like the data to dictate

them as well. Including these as parameters changes the regression problem from

a straightforward linear problem to a combinatorially hard nonlinear problem. In

practice, shortcuts such as greedy algorithms or two stage processes are used. Section

6.7 describes some such approaches.

6.7 Radial Basis Functions and Kernels

2 Wood(2003) Thin plate regression splines

Package ’mgcv’ in R (https://cran.r-project.org/web/packages/mgcv/mgcv.pdf)

mgcv::gam에 bs=’tp’ 또는 ’ts’로 tps 적합 가능.

model.matrix 및 smooth.construct 함수로 penalty 함수 구할 수 있음.

그러나 model matrix X와 Penalty S 형태가 이해가 가지 않아 조사한 자료.

5

2.1 Introduction

• The first aim of this paper is to find optimal approximations to the thin plate splines

which will remove the computational obstacles to their use, while minimizing the

deterioration in model performance that is entailed by the approximation (i.e. to find

optimal penalized regression splines).

• The second aim is to remove the knot placement problem from regression spline

modelling in a way that will allow model selection by the hypothesis testing methods

that are usually employed in regression modelling. Two immediate results of achieving

these aims are to provide a good way of incorporating smooth function terms into

non-linear models and to provide a way of incorporating thin plate spline like terms

into generalized additive models (GAMs).

2.2 Low rank thin plate spline like smoothers

• Consider the problem of estimating the smooth function f(x) where x ∈ Rd.

• From n(≥ d) observations (yi,xi) such that

yi = f(xi) + εi

• TPS can be used to estimate f by finding the function g minimizing

‖y − g‖2 + λJmd(g) (5)

• The wiggliness penalty is defined as

Jmd =

∫
· · ·
∫
Rd

∑
v1+...vd=m

m!

v1!...vd!

(
∂mg

∂xv11 ...∂x
vd
d

)2

dx1...dxd. (6)

e.g) d=2, m=2 ∫∫ ∑
v1+v2=2

2!

v1!v2!

(
∂2g

∂xv11 ∂x
v2
2

)2

dx1dx2.

=

∫∫
2!

2!0!

(
∂2g

∂x21∂x
0
2

)2

+
2!

1!1!

(
∂2g

∂x11∂x
1
2

)2

+
2!

0!2!

(
∂2g

∂x01∂x
2
2

)2

dx1dx2

6

e.g) d=2, m=1 (cf. https://en.wikipedia.org/wiki/Polyharmonic spline)∫∫ ∑
v1+v2=1

1!

v1!v2!

(
∂g

∂xv11 ∂x
v2
2

)2

dx1dx2.

=

∫∫
1!

1!0!

(
∂g

∂x11∂x
0
2

)2

+
1!

0!1!

(
∂g

∂x01∂x
1
2

)2

dx1dx2

• Provided that we impose the technical restriction 2m > d, it can be shown that the

function minimizing expression (5) has the form

g(x) =
n∑
i=1

δiηmd(‖x− xi‖) +
M∑
j=1

αjφj(x) (7)

where δ and α are unknown parameter vectors subject to the constraint that T′δ = 0

and Tij = φj(xi).

• The M =
(
m+d−1

d

)
functions φ are linearly independent polynomials spanning the

space of polynomials in Rd of degree less than m (i.e. the space of polynomials for

which Jmd is 0). Furthermore

ηmd(r) =

? d even,

? d odd.

• Now, defining matrix E by Eij ≡ νmd(‖xi − xj‖).

• The spline fitting problem becomes

min ‖y − Eδ −Tα‖2 + λδ′Eδ subject to T′δ = 0 (8)

2.3 Appendix A : Implementation by using standard software

Here are the steps required to construct a rank k basis

1. Form the n× n matrix E and the n×M matrix T defined in Section2.

2. Obtain the truncated spectral decomposition Ek = UkDkU
′
k, by the use of any

standard eigen-routines to finc the full spectral decomposition of E.

7

3. Using standard routines, form the QR-decomposition QR = U′kT where the last

n −M rows of R are 0 and Q is orthonormal. Then the final n −M colmuns of Q

give Zk, the basis for the null space of the equality constraints. If efficiency matters

then Zk can be stored as M Householder rotations.

4. Writing the parameter k−vector of the thin plate regression spline as β = (δ̃′,α′)′,

then the n×k design matrix for the thin plate regression spline is X = (UkDkZk,T).

Similarly the penalty matrix woiuld be

S =

Z′kDkZk 0

0 0


where the padding with zero matrices is for notational convenience.

5. To fit penalized tprs

‖y −Xβ‖2 + λβ′Sβ

> library(mgcv)

> load("~/GITHUB/gev/kma_data/Pr_46.RData")

> # stnlds로 dataframe 쪼개서 list에 분배

> ss = split.data.frame(Pr_46,Pr_46$stnlds)

> # 강수량(pr) 변수로만 이루어진 list 생성

> xlist = lapply(ss,"[[","pr")

> x=unique(Pr_46$long)

> y=unique(Pr_46$lat)

> pr_tmp=unlist(lapply(xlist,function(x) x[1]))

> knots= data.frame(x=quantile(x,prob = seq(0, 1, length = 3)),

+ y=quantile(y,prob = seq(0, 1, length = 3)))

> gam_object = s(x,y,bs="tp",m=2) # m=2 for normal cubic spline penalty

> gam_fit = gam(pr_tmp~s(x,y,bs="tp",m=2))

> gam_smooth = gam_fit$smooth[[1]]

> gam_smooth$bs.dim # intercept + 29

[1] 30

> dim(model.matrix(gam_fit)) # X matrix

8

[1] 56 30

> dim(gam_smooth$S[[1]]) # penalty

[1] 29 29

3 Sangalli et al.(2013)Spatial spline regression models

TPS와 penalty가 다름.

Ramsay (2002), Wood et al. (2008)에 covariates 추가함.

References

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learning,

volume 1. Springer series in statistics New York.

Ramsay, T. (2002). Spline smoothing over difficult regions. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 64(2):307–319.

Sangalli, L. M., Ramsay, J. O., and Ramsay, T. O. (2013). Spatial spline regression models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(4):681–

703.

Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 65(1):95–114.

Wood, S. N., Bravington, M. V., and Hedley, S. L. (2008). Soap film smoothing. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):931–955.

9

