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5.7 Multidimensional Splines
e Multi-dimensional spline models

— Suppose X € R2.

— hie(X)), k=1,..., M, is a basis functions for representing function of X.

Then the M1 x M2 dimensional tensor product basis defined by
9 = hlj(Xl)th(XQ)a ] = 17 "7M1a k= 17 ) MQ- (1)
— (1) can be used for representing a two-dimensional function:

g(X) =D Birgin(X). (2)
J k

e Multi-dimensional smoothing splines

— One-dimensional smoothing splines generalized to higher dimensions as well.

— Suppose we have pairs 1;, z; with z; € R?,
N
miny _(y: — f(w:))* + M1, (3)
i=1

where J is an appropriate penalty functional for stabilizing a function f in RY.
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e Thin plate spline

— For example, in R?

= [ [(5A) v (FA2) s (%) |t

— Optimizing (3) with this penalty leads to a smooth two-dimensional surface,

known as a thin-plate spline.
— It shares many properties with the one-dimensional cubic smoothing spline:
x as A — 0, the solution approaches an interpolating function [the one with
smallest penalty (4)];
*x as A — 00, the solution approaches the least squares plane;

x for intermediate values of A, the solution can be represented as a linear
expansion of basis functions, whose coefficients are obtained by a form of

generalized ridge regression;

— The solution has the form (F5 F=3F F5)
N
f(@) = o+ BTa+ ) ahy(x), (5)
j=1

where hy(2) = |z — 2,2 loglz — .

— These h; are examples of radial basis functions, which are discussed

in more detail in the next section.

The coefficients are found by (5) into (3), which reduces to a finite-dimensional

penalized least squares problem.

For the penalty to be finite, the coefficients a; have to satisfy a set of linear

constraints; see Exercise 5.14.
(Ex. 5.14)
Derive the constraints on the a; in the thin-plate spline expansion (5) to guar-

antee that the penalty J(f) is finite. How else could one ensure that the penalty

was finite?



— The computational complexity for thin-plate splines is O(N?), since there is
not in general any sparse structure that can be exploited. However, as with
univariate smoothing splines, we can get away with substantially less than the

N knots prescribed by the solution (5).

— In practice, it is usually sufficient to work with a lattice of knots covering the
domain. The penalty is computed for the reduced expansion just as before. Using

K knots reduces the computations to O(NK? + K3).

Spatial GEV Model Example

e In this study the location parameter is parametrized by
MS:U0+h(XS>a 5217"'787

® /i is a global location parameter across the considered sites.

o X, = (T, sz)T is the coordinate vector whose elements denote longitude and latitude

of the site s.
e 1 :R?— R!is a spatial map consisting of TPS basis functions.

e Let the vector valued maps consisting of the B-splines basis functions by B,(:) =

(Bi(+),- -+, Bik,(+)) for I = 1,2, which represent the features of a site. (4] (2) #)

e Then, the TPS basis functions are given by the row-wise Kronecker product of B-

splines basis functions denoted by B(z1s, 25) = Bi(215) 0 Ba(2,) : R? 5 RF152,

e In our case for a given x, = (215, 72,) " the TPS basis functions return a K;K,(= K)

dimensional feature vector denoted by
2z, = (B11(715) Ba1(725), Bi1(215) Baa(22s) - -+ Bik, (215) Bik, ($25))T-

e Then the spatial function h is given by

h(xs) = B(w15,725) ' B=12.8, BeRK



library(fda)
load("./kma_data/Pr_46.RData")
x=unique (Pr_46$long) # A%
y=unique (Pr_46$lat) # =

3)))
3)))

Xx_bsobj=create.bspline.basis(range(x),breaks=quantile(x,prob=seq(0,1,length

y_bsobj=create.bspline.basis(range(y) ,breaks=quantile(y,prob=seq(0,1,length
xbs=eval.basis(x,x_bsobj)

ybs=eval.basis(y,y_bsobj)

# row-wise kronecker product (Z matrix)

tensorbs=do.call(’cbind’, lapply(l:ncol(xbs), function(i) xbs[,i]*ybs))

e The TPS penalty function can be written as quadratic function of 3 (4] (5) Zal):

(@) = [ By B0
(@)1 = [ B0 Bu(0
{5}k = / By;(t) Buc(t)dt,
where {A};, denotes the element of A in the ith row and the jth column.
e Then, the TPS penalty function can be written as quadratic function of 3:
Jhe) = BT (9 @ 0f) +208) e of) + of « 0f)) 8
B'Qsp.

We use the R package fda to obtain Qg.
(cf. ?fda::bsplinepen) Each element is the inner product of two B-spline basis functions

after applying the derivative or linear differential operator defined by Lfdobj.
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Fmat <- kronecker (bsplinepen(x_bsobj,Lfdobj=2),bsplinepen(y_bsobj,Lfdobj=0))
> Gmat <- kronecker (bsplinepen(x_bsobj,Lfdobj=0) ,bsplinepen(y_bsobj,Lfdobj=2))
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Hmat <- kronecker (bsplinepen(x_bsobj,Lfdobj=1),bsplinepen(y_bsobj,Lfdobj=1))

=+

Omega_B

> Om <- Fmat+Gmat+2*Hmat



e We estimate the spatial function by minimizing the penalized negative log-likelihood,

5.8 Regularization and Reproducing Kernel Hilbert Spaces

e It is also known that a thin-plate splines is an expansion in radial basis functions,

generated by the kernel
K(z,y) = [lz = y[I* log(l|lz — y])) (7)

e Radial basis functions are discussed in more detail in Section 6.7.

e (cf. page 36)
Radial basis functions are symmetric p-dimensional kernels located at particular cen-

troids,

M=

fo(z) = K, (ttns ) Om;

m=1
for example, the Gaussian kernel K (p,x) = e~le=nl?/2 ig popular.

Radial basis functions have centroids u,, and scales ), that have to be determined.
The spline basis functions have knots. In general we would like the data to dictate
them as well. Including these as parameters changes the regression problem from
a straightforward linear problem to a combinatorially hard nonlinear problem. In
practice, shortcuts such as greedy algorithms or two stage processes are used. Section

6.7 describes some such approaches.

6.7 Radial Basis Functions and Kernels

2 Woo0d(2003) Thin plate regression splines

Package 'mgev’ in R (https://cran.r-project.org/web/packages/mgev/mgev.pdf)
mgev:gamo]| bs="tp’ T "ts'Z tps A 715
model.matrix ¥ smooth.construct $+=2 penalty St I+ 4~ 312

T

13 model matrix X2} Penalty S Sej7} o|a|7} 7}#] QFol AR A1 =.



2.1 Introduction

e The first aim of this paper is to find optimal approximations to the thin plate splines
which will remove the computational obstacles to their use, while minimizing the
deterioration in model performance that is entailed by the approximation (i.e. to find

optimal penalized regression splines).

e The second aim is to remove the knot placement problem from regression spline
modelling in a way that will allow model selection by the hypothesis testing methods
that are usually employed in regression modelling. Two immediate results of achieving
these aims are to provide a good way of incorporating smooth function terms into
non-linear models and to provide a way of incorporating thin plate spline like terms

into generalized additive models (GAMs).

2.2 Low rank thin plate spline like smoothers

e Consider the problem of estimating the smooth function f(x) where x € R%.

e From n(> d) observations (y;, X;) such that
yi = f(xi) + €
e TPS can be used to estimate f by finding the function g minimizing

ly = gl + Amalg)  (5)

e The wiggliness penalty is defined as

m! o™g 2
=/ dzy...dxg.
Jd / /]Rd Z v1l...vg! (ﬁxi’l...@xzd) S (6)

v1+...vg=m

2! 2g \°
dzydxs.
// Z (! (81‘11)185612)2) T

v1+v2=2

o0 (0% \°, 2 [ g \' 2 [ g \
— dr,d
// 210! (axfaxg) RIETIT <8xi8x§) o <3x?3$§) e

e.g) d=2, m=2




e.g) d=2, m=1 (cf. https://en.wikipedia.org/wiki/Polyharmonic_spline)

1!
// Z Ul'"Uz (3:51{10 ”2) dx1d;.

v1+ve=

' dayd
// 110! (ax%a%) o (aﬁga@) T

e Provided that we impose the technical restriction 2m > d, it can be shown that the

function minimizing expression (5) has the form

— Z(Smmd(ﬂx — ) + Z a;p;(x)  (7)

where § and a are unknown parameter vectors subject to the constraint that Td = 0

and Ej = ¢]<Xz>

e The M = (m+j_1) functions ¢ are linearly independent polynomials spanning the

space of polynomials in R? of degree less than m (i.e. the space of polynomials for

which J,,,4 is 0). Furthermore

? d even,
Nmd(T) =
? d odd.

e Now, defining matrix E by E;; = vpa(||xi — x]))-
e The spline fitting problem becomes

min ||y — E§ — Tal|*> + A&Ed  subject to T'd = 0 (8)

2.3 Appendix A : Implementation by using standard software

Here are the steps required to construct a rank k& basis
1. Form the n x n matrix E and the n x M matrix T defined in Section2.

2. Obtain the truncated spectral decomposition Ey = UpD,U’;, by the use of any

standard eigen-routines to finc the full spectral decomposition of E.



3. Using standard routines, form the QR-decomposition QR = U T where the last
n — M rows of R are 0 and Q is orthonormal. Then the final n — M colmuns of Q
give Zy, the basis for the null space of the equality constraints. If efficiency matters

then Z; can be stored as M Householder rotations.

4. Writing the parameter k—vector of the thin plate regression spline as 3 = (5’, o),
then the n x k design matrix for the thin plate regression spline is X = (UDyZy, T).

Similarly the penalty matrix woiuld be

7! DyZy 0
0 0

where the padding with zero matrices is for notational convenience.

5. To fit penalized tprs
ly —XB[* + \3'SB

> library(mgcv)

> load("~/GITHUB/gev/kma_data/Pr_46.RData")
> # stnlds= dataframe Z7HA{ 1istOf =HY

> ss = split.data.frame(Pr_46,Pr_46$stnlds)
> # god(pr) HLZ0 O[F07 1ist dd

> xlist = lapply(ss,"[[","pr")

> x=unique (Pr_46$long)

> y=unique(Pr_46$lat)

> pr_tmp=unlist(lapply(xlist,function(x) x[1]))

3)),
3)))

> gam_object = s(x,y,bs="tp",m=2) # m=2 for normal cubic spline penalty

> knots= data.frame(x=quantile(x,prob = seq(0, 1, length

+ y=quantile(y,prob = seq(0, 1, length
> gam_fit = gam(pr_tmp~s(x,y,bs="tp",m=2))

> gam_smooth = gam_fit$smooth[[1]]

> gam_smooth$bs.dim # intercept + 29

[1] 30

> dim(model .matrix(gam_fit)) # X matrix
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[1] 56 30
> dim(gam_smooth$S[[1]1]) # penalty
[1] 29 29

3 Sangalli et al.(2013)Spatial spline regression models

TPSe} penalty 7} th&.
Ramsay (2002), Wood et al. (2008)9]| covariates F=7}9F.
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